
PS2: Hydroclimate Risk Assessment for the Colorado
River Basin (Due Nov 17)

End-to-end modeling: snow–soil–runoff, Bayesian calibration, and
climate downscaling

CEVE 543 Fall 2025

2025-10-06

This problem set is the capstone assignment for Module 2 and spans approximately six weeks of class time.
It requires you to synthesize concepts from the entire course—from Bayesian inference and numerical
methods to climate model analysis. The deliverable is a complete, end-to-end analysis of future drought
risk for the Colorado River Basin, written as a technical report.

 Note

Assigned: Oct 6, 2025
Due: Nov 17, 2025

1 Provided
• Historical data: colorado_river_data.csv — daily, basin-averaged (1950–2022)

‣ date: Date of record
‣ prcp: Precipitation (mm/day)
‣ tavg: Average temperature (°C)
‣ streamflow_obs: Observed streamflow at Lees Ferry (mm/day, normalized by basin area)

• GCM data: cesm_le_rcp85.csv — raw daily GCM output (2050–2080) from one CESM-LE member
under RCP 8.5 (date, prcp, tavg)

• Boilerplate Quarto template: PS2-template.qmd — suggested report structure, data loading helpers,
plotting examples

! Important

Data availability

Links/paths will be posted on Canvas or added to this repo when finalized. If these files are not yet
present in your local checkout, proceed with stubs and clearly document assumptions. Replace with
provided files once available.
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1.1 Julia setup
You will likely need the following packages (non-exhaustive): CSV, DataFrames, Dates, StatsBase,
Distributions, Turing, MCMCChains, Random, Plots or CairoMakie.

1. Open the Julia REPL
2. Type ] to enter package mode
3. Install packages, e.g., add CSV DataFrames Distributions Turing MCMCChains

2 Overview: The modeling chain
You will act as a hydroclimate risk analyst tasked with projecting future water supply in the Colorado
River Basin. Implement the complete modeling chain:

1. Build a model: Implement a simple, process-based hydrological model from governing equations.
2. Calibrate the model: Use Bayesian MCMC to calibrate against the historical record.
3. Downscale climate projections: Process raw GCM output and develop multiple future climate scenarios

using different downscaling techniques.
4. Project future risk: Force your calibrated model with future scenarios and synthesize results, including

propagation of parameter uncertainty.

3 Part 1: The hydrological model — theory and implementation
3.1 Task 1.1: Model theory
Implement a lumped conceptual snowmelt–runoff model designed to capture first-order hydroclimate
processes in the Colorado River Basin: seasonal accumulation of mountain snowpack and spring melt.

The model has three conceptual modules:

1. Snow module (temperature-index/degree-day)

• Accumulation: when basin-mean temperature is below a threshold 𝑇thresh, all precipitation is snow and
accumulates in snow water equivalent (SWE).

• Melt: when temperature is above the threshold, existing snow melts at rate 𝑀 = 𝐶𝑚max(0, 𝑇 −
𝑇thresh), bounded by available SWE. Melt plus rain forms liquid water input to the soil module.

2. Soil moisture module (“leaky bucket”)

• Storage: incoming liquid water fills a conceptual bucket up to capacity 𝑆max.
• Evapotranspiration: actual ET is a fraction of potential ET (estimated from temperature), scaled by

relative soil water: 𝐸𝑎 = 𝐸𝑝 (𝑆/𝑆max).
• Runoff generation: overflow beyond 𝑆max becomes excess runoff.

3. Runoff routing module (linear reservoir)

• The routing store 𝐺 represents aggregate river network and shallow groundwater effects; outflow is
proportional to storage: 𝑄 = 𝑘𝐺.

State variables:

• SWE (𝑡): snow water equivalent (mm)
• 𝑆(𝑡): soil moisture content (mm)
• 𝐺(𝑡): routing storage (mm)
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Governing ODEs:

𝑑 SWE
𝑑𝑡

= 𝑃𝑠(𝑡) −𝑀(𝑡)

𝑑𝑆
𝑑𝑡

= 𝑊in(𝑡) − 𝐸𝑎(𝑡) − 𝑅(𝑡)

𝑑𝐺
𝑑𝑡

= 𝑅(𝑡) − 𝑄(𝑡), 𝑄(𝑡) = 𝑘𝐺(𝑡)

Fluxes like melt 𝑀(𝑡) and runoff 𝑅(𝑡) are functions of states and meteorological inputs.

3.2 Task 1.2: Numerical discretization
Use forward Euler with daily time step (Δ𝑡 = 1 day). For day 𝑖:

1. Snow module

• 𝑀𝑖 = min( SWE𝑖−1, 𝐶𝑚max(0, 𝑇𝑖 − 𝑇thresh) )
• SWE𝑖 = SWE𝑖−1 + 𝑃snow,𝑖 −𝑀𝑖
• 𝑊in,𝑖 = 𝑃rain,𝑖 +𝑀𝑖

2. Soil module

• 𝐸𝑎,𝑖 = 𝐸𝑝,𝑖 (𝑆𝑖−1/𝑆max) (with 𝐸𝑝,𝑖 from, e.g., Hamon)
• 𝑆′𝑖 = 𝑆𝑖−1 +𝑊in,𝑖 −𝐸𝑎,𝑖
• 𝑅𝑖 = max(0, 𝑆′𝑖 − 𝑆max)
• 𝑆𝑖 = 𝑆′𝑖 −𝑅𝑖

3. Routing module

• 𝑄𝑖 = 𝑘 (𝐺𝑖−1 +𝑅𝑖)
• 𝐺𝑖 = (𝐺𝑖−1 +𝑅𝑖) − 𝑄𝑖

3.3 Task 1.3: Implementation
Implement a Julia function with signature run_hydromodel(params, climate_data) that returns a vector
of simulated daily streamflow.

Parameters to calibrate (params):

• 𝑇thresh (°C): snow/rain temperature threshold
• 𝐶𝑚 (mm/°C/day): degree-day melt factor
• 𝑆max (mm): maximum soil water capacity
• 𝑘 (1/day): linear reservoir recession coefficient
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 Tip

Function contract

Inputs

• params::NamedTuple or Vector{<:Real} with fields/positions (T_thresh, C_m, S_max, k)
• climate_data::DataFrame with columns :date, :prcp, :tavg (and optionally :streamflow_obs

during calibration)

Output

• Vector{Float64} of daily streamflow 𝑄𝑖 (mm/day) aligned to input dates

4 Part 2: Bayesian model calibration
4.1 Task 2.1: MCMC setup
Using Turing.jl, build a Bayesian model to estimate the four physical parameters plus an observation
error scale 𝜎.

• Priors: choose physically plausible distributions (e.g., 𝑇thresh centered near 0∘C, 𝑆max > 0, 𝑘 ∈ (0, 1)).
Justify choices.

• Likelihood: assume IID Gaussian residuals for streamflow with unknown 𝜎.

4.2 Task 2.2: Calibration and assessment
• Run MCMC to obtain at least 2,000 posterior samples after warmup; check convergence diagnostics.
• Deliverables:

1. Plot of prior vs. posterior for the four physical parameters.
2. Hydrograph overlay: observed streamflow and simulated streamflow using the MAP (or posterior

mean) parameters.
3. A 1–2 paragraph interpretation of posteriors (e.g., what 𝑆max implies about storage) and a critical

assessment of hydrograph fit.

5 Part 3: Future climate scenarios
Create three future climate scenarios for 2050–2080.

5.1 Task 3.1: Raw GCM forcing
• Analyze raw GCM vs. historical: compare distributions (e.g., CDFs or violin plots) for daily precipitation

and temperature.
• Force the calibrated hydrologic model with raw GCM data; comment on biases in resulting streamflow.

5.2 Task 3.2: Univariate bias correction
• Implement simple quantile mapping to bias-correct daily precipitation and temperature independently

against historical observations.
• Force the hydrologic model with the bias-corrected series; compare with raw-forced results.

5.3 Task 3.3: Statistical downscaling with a weather generator
• Develop a 2-state (wet/dry) Hidden Markov Model (HMM) weather generator.
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• Train HMM parameters (transition probabilities; emission distributions for precipitation amount and
temperature) on historical data.

• Adjust trained HMM parameters using GCM-projected delta changes in mean precipitation and temper-
ature.

• Generate a 30-year synthetic weather sequence and force the hydrologic model.

6 Part 4: Synthesis and uncertainty quantification
6.1 Task 4.1: Scenario comparison
• Create a summary plot showing mean monthly hydrographs for the historical period and the three

future scenarios (Raw GCM, Bias-Corrected, HMM).

6.2 Task 4.2: Propagating parameter uncertainty
• For the HMM scenario, quantify parameter uncertainty by running a 100-member ensemble:

1. Draw a unique parameter set from the MCMC posterior for each member.
2. Run the hydrologic model with this parameter set using the HMM-generated weather.

6.3 Task 4.3: Final report
Deliverables:

1. The mean monthly hydrograph comparison plot from Task 4.1.
2. A synthesis plot for the HMM scenario showing the mean monthly hydrograph with a 90% uncertainty

band from the 100-member ensemble.
3. An executive summary (2–3 paragraphs) for a water manager: explain the cascade of uncertainty and

argue why the HMM-forced, uncertainty-quantified projection is most credible and useful for long-
term planning, citing your results.

7 Notes and guidance
• Units: keep all fluxes in mm/day; normalize streamflow by basin area to compare with observations.
• Potential ET: you may use Hamon’s method or a comparable temperature-based proxy; justify your

choice.
• Numerical stability: enforce non-negativity of states; cap melt by available SWE.
• Reproducibility: fix RNG seeds when appropriate and document all assumptions and choices.

Bibliography
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