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1 Motivation
Statistical modeling requires making many choices: which distribution family to use, which covariates (if
any) to include for nonstationarity, which parameters to model as nonstationary, how to pool information
across space, and more. There is no single “right” answer to these questions. How can we proceed in a
principled way?

This challenge extends well beyond extreme value analysis to all of statistical modeling [1], [2]. In this
lecture, we explore quantitative criteria for model selection and comparison.

 Linear Regression as a Mental Model

Many of the quantitative approaches we discuss were originally developed with linear regression in
mind, though they apply more generally. When interpreting these methods for extreme value analysis
or other complex models, it’s worth keeping in mind that some of their theoretical guarantees may
not hold exactly.

 Further Reading

For accessible discussions of model selection challenges, see D. J. Navarro [2] and G. Heinze, C.
Wallisch, and D. Dunkler [3]. For more mathematical depth on Bayesian predictive methods, see J.
Piironen and A. Vehtari [4]. R. McElreath [5] (Chapter 7) provides an excellent conceptual introduction
to information criteria.

2 Quantitative Model Selection

 Technical Content

This section introduces some mathematical formalism. You should focus on understanding the key
concepts and trade-offs rather than memorizing equations.
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2.1 The Challenge
We want to make probabilistic predictions about unobserved future data 𝑦. This is challenging because
Earth systems are high-dimensional, multi-scale, nonlinear, and complex.

To approximate the true system, we define a model space ℳ containing candidate models, then use data
to select among them [4]. The key question becomes: how do we measure and compare the predictive
performance of different models?

2.2 Kullback-Leibler Divergence
The Kullback-Leibler (KL) divergence measures how similar two probability distributions are. Let 𝒳
denote the set of all possible outcomes (e.g., possible values of annual maximum precipitation), and let 𝑥
denote a specific outcome. The KL divergence from distribution 𝑃  to distribution 𝑄 is:

𝐷KL(𝑃 ∥ 𝑄) = ∑
𝑥∈𝒳
𝑃(𝑥) log[𝑃(𝑥)

𝑄(𝑥)
]

One interpretation is the amount of information lost when 𝑄 is used to approximate 𝑃 . Another is the
information gained by revising one’s beliefs from 𝑄 to 𝑃 . For continuous random variables, the sum
becomes an integral.

Minimizing KL divergence from a candidate model to the true data-generating distribution is equivalent
to maximizing expected predictive accuracy.

2.3 Measures of Predictive Accuracy
We measure predictive performance using the log predictive density log 𝑝(𝑦 | 𝐷,𝑀), where 𝐷 represents
our data and 𝑀  represents our model. Since future observations 𝑦 are unknown, we evaluate this in
expectation:

𝑢(𝑀) = 𝔼[log 𝑝(𝑦 | 𝐷,𝑀)] = ∫𝑝𝑡(𝑦) log 𝑝(𝑦 | 𝐷,𝑀) 𝑑𝑦

where 𝑝𝑡(𝑦) is the unknown true data-generating distribution.

Maximizing this expected log predictive density is equivalent to minimizing KL divergence from our
candidate model to the true distribution.

In practice, we don’t know the true distribution, so we approximate using the log pointwise predictive
density (lppd):

lppd =∑
𝑁

𝑖=1
log[ 1

𝑆
∑
𝑆

𝑠=1
𝑝(𝑦𝑖 | 𝜃𝑠)]

where we have approximated the posterior distribution with 𝑆 samples from MCMC.

The lppd computed on observed data 𝑦 overestimates the expected predictive density for future data.
Information criteria correct for this optimism.
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3 Model Comparison Approaches
3.1 Significance Testing
A common approach in practice is to use null hypothesis significance testing (NHST) to decide whether
to include variables [1], [3]. For example, to decide whether to include a trend term with coefficient 𝛽:

1. Specify a null hypothesis: 𝛽 = 0
2. Compute a test statistic and 𝑝-value
3. If 𝑝 < 𝛼 (commonly 𝛼 = 0.05), include the variable; otherwise exclude it

This approach is widely used but has well-documented problems [1], [6]. It assumes the existence of a
true model (ℳ-closed) and is sensitive to arbitrary significance thresholds. Sequential testing (testing
multiple variables one at a time) compounds these issues through the problem of multiple comparisons.

3.2 Information Criteria
Information criteria provide quantitative measures for comparing models by balancing fit quality against
model complexity. All of these criteria can be computed from fitted models and used to compare alter-
natives.

3.2.a Akaike Information Criterion (AIC)
The AIC provides a simple correction for overfitting [5]. If a model with maximum likelihood estimate
𝜃mle fits 𝑘 parameters, then:

AIC = 2𝑘 − 2 ln ℒ̂

where ℒ̂ is the maximized likelihood.

The first term penalizes model complexity (more parameters increase AIC). The second term rewards fit
to the data (higher likelihood decreases AIC). We select the model that minimizes AIC.

When to use: AIC is appropriate for maximum likelihood estimation and focuses on predictive perfor-
mance in an ℳ-open setting. It aims to select the model that will best predict future data, even if none of
the candidate models is “true.”

Assumptions: The AIC assumes that parameters are asymptotically normally distributed and that
residuals are independent given 𝜃. These assumptions often hold approximately for linear regression but
may be questionable for more complex models.

Key limitation: For complex models, determining the effective number of parameters 𝑘 is not straight-
forward.

3.2.b Bayesian Information Criterion (BIC)
The BIC takes a different approach by approximating the marginal probability of the data 𝑝(𝑦) [7]:

BIC = 𝑘 ln(𝑛) − 2 ln ℒ̂

where 𝑛 is the sample size and ℒ̂ = max𝜃 𝑝(𝑦 | 𝜃,𝑀).

The BIC penalizes model complexity more heavily than AIC when 𝑛 > 7, favoring simpler models.

When to use: BIC is appropriate when you believe the true model is among your candidates (an ℳ-
closed perspective) and want to identify it. The model with the lowest BIC will asymptotically be the
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“true” model if the true model is one of the choices. This makes BIC useful for hypothesis testing and
model identification rather than pure prediction.

Key assumption: BIC assumes that one of the candidate models is the true data-generating process.
Under this assumption, BIC provides consistent model selection as sample size increases.

3.2.c Watanabe-Akaike Information Criterion (WAIC)
WAIC is a more fully Bayesian approach that is asymptotically equivalent to Bayesian cross-validation
[8]. Unlike AIC and BIC, which use point estimates, WAIC uses the full posterior distribution.

The WAIC is computed as:

WAIC = −2(lppd − 𝑝WAIC)

where lppd is the log pointwise predictive density (defined earlier) and 𝑝WAIC is the effective number of
parameters, computed as:

𝑝WAIC =∑
𝑁

𝑖=1
Varpost[log 𝑝(𝑦𝑖 | 𝜃)]

The variance is computed over the posterior distribution of 𝜃.

When to use: WAIC is the recommended default for Bayesian model comparison [8]. Use it when you
have MCMC samples and want to focus on predictive performance. It properly accounts for posterior
uncertainty and works in both ℳ-open and ℳ-closed settings.

Advantages: WAIC is fully Bayesian and works with posterior distributions rather than point estimates.

Limitations: Like other information criteria, WAIC assumes that future data will be generated from the
same process as the observed data.

3.3 Model Averaging
Rather than selecting a single “best” model, we can treat model selection as a source of uncertainty [4]. If
we have candidate models {𝑀ℓ}

𝐿
ℓ=1, the posterior distribution over models is:

𝑝(𝑀 | 𝐷) ∝ 𝑝(𝐷 | 𝑀)𝑝(𝑀)

We can then make predictions by averaging over all models:

𝑝(𝑦 | 𝐷) =∑
𝐿

ℓ=1
𝑝(𝑦 | 𝐷,𝑀ℓ)𝑝(𝑀ℓ | 𝐷)

This approach acknowledges model uncertainty explicitly rather than conditioning all inferences on a
single selected model. Bayesian model averaging can improve predictive performance, especially when
multiple models have similar support from the data [8]. More advanced approaches like stacking can
further enhance predictive accuracy [9].

4ℳ-Open vs ℳ-Closed Perspectives
A fundamental distinction in model selection is whether we assume the “true” model is in our candidate
set [8].
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ℳ-Closed: Assumes one of the candidate models is the true data-generating process. Under this assump-
tion, methods like BIC have strong theoretical guarantees—as sample size increases, we will identify the
true model. This perspective motivates selection approaches that choose a single “best” model.

ℳ-Open: Recognizes that all models are approximations, and the true data-generating process is not in
our candidate set. This is the reality we face in practice, especially for complex Earth systems. Under this
perspective, we should focus on predictive performance rather than identifying a “true” model [4].

The distinction has practical implications. In an ℳ-closed world, theoretical guarantees about conver-
gence and optimality apply. In an ℳ-open world (where we actually live), these guarantees break down,
and judgment becomes essential [2], [10].

This is why model selection requires more than just computing information criteria and selecting the
minimum. We must consider the scientific context, check assumptions, examine multiple metrics, and
acknowledge uncertainty. Statistical theory provides useful tools, but cannot replace domain knowledge
and careful thinking about what we’re trying to accomplish.

5 Key Takeaways
Model comparison and selection involves subjective judgments [2], [10]. There is no purely objective,
automatic way to identify the “best” model [3]. Several important principles guide good practice:

1. No single criterion is definitive. Be skeptical of analyses that rely on a single metric (like “AIC
selected this model”) without additional justification [3].

2. Transparency matters. Make your assumptions and decision criteria explicit so others can evaluate
and critique your choices [10], [11].

3. Context and purpose guide selection. Different applications may prioritize different aspects of
model performance (e.g., tail behavior vs. central tendency, parsimony vs. flexibility) [2].

4. Uncertainty about model form deserves attention. When multiple models perform similarly,
model averaging acknowledges this uncertainty rather than pretending we know the true model [4].

Statistical modeling requires judgment informed by domain knowledge, diagnostic checking, and aware-
ness of the assumptions underlying different selection criteria [12]. Subjective does not mean arbitrary
—we can and should use principled approaches while acknowledging the limits of formal procedures [10].
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